
Database Transaction

A DATABASE TRANSACTION is a logical unit of processing in a DBMS which entails
one or more database access operation. In a nutshell, database transactions represent
real-world events of any enterprise.

All types of database access operation which are held between the beginning and end
transaction statements are considered as a single logical transaction. During the
transaction the database is inconsistent. Only once the database is committed the state
is changed from one consistent state to another.

Facts about Database Transactions

 A transaction is a program unit whose execution may or may not change the
contents of a database.

 The transaction is executed as a single unit
 If the database operations do not update the database but only retrieve data, this

type of transaction is called a read-only transaction.
 A successful transaction can change the database from one CONSISTENT

STATE to another
 DBMS transactions must be atomic, consistent, isolated and durable
 If the database were in an inconsistent state before a transaction, it would remain

in the inconsistent state after the transaction.

ACID Properties

A transaction is a very small unit of a program and it may contain several lowlevel
tasks. A transaction in a database system must

https://www.guru99.com/images/1/100518_0500_DBMSTransac1.png

maintain Atomicity, Consistency, Isolation, and Durability − commonly known as ACID
properties − in order to ensure accuracy, completeness, and data integrity.

In order to maintain consistency in a database, before and after the transaction, certain
properties are followed. These are called ACID properties.

 Atomicity − This property states that a transaction must be treated as an atomic
unit, that is, either all of its operations are executed or none. There must be no
state in a database where a transaction is left par

 tially completed. States should be defined either before the execution of the
transaction or after the execution/abortion/failure of the transaction.

 Consistency − The database must remain in a consistent state after any
transaction. No transaction should have any adverse effect on the data residing
in the database. If the database was in a consistent state before the execution
of a transaction, it must remain consistent after the execution of the transaction
as well.

 Durability − The database should be durable enough to hold all its latest
updates even if the system fails or restarts. If a transaction updates a chunk of
data in a database and commits, then the database will hold the modified data.
If a transaction commits but the system fails before the data could be written on
to the disk, then that data will be updated once the system springs back into
action.

 Isolation − In a database system where more than one transaction are being
executed simultaneously and in parallel, the property of isolation states that all
the transactions will be carried out and executed as if it is the only transaction in
the system. No transaction will affect the existence of any other transaction.

Concurrency Control

Concurrency control is the procedure in DBMS for managing simultaneous operations
without conflicting with each another. Concurrent access is quite easy if all users are
just reading data. There is no way they can interfere with one another. Though for any
practical database, would have a mix of reading and WRITE operations and hence the
concurrency is a challenge.

Concurrency control is used to address such conflicts which mostly occur with a multi-
user system. It helps you to make sure that database transactions are performed
concurrently without violating the data integrity of respective databases.

Therefore, concurrency control is a most important element for the proper functioning of
a system where two or multiple database transactions that require access to the same
data, are executed simultaneously.

Potential problems of Concurrency

Here, are some issues which you will likely to face while using the Concurrency Control
method:

 Lost Updates occur when multiple transactions select the same row and update
the row based on the value selected

 Uncommitted dependency issues occur when the second transaction selects a
row which is updated by another transaction (dirty read)

 Non-Repeatable Read occurs when a second transaction is trying to access the
same row several times and reads different data each time.

 Incorrect Summary issue occurs when one transaction takes summary over the
value of all the instances of a repeated data-item, and second transaction update
few instances of that specific data-item. In that situation, the resulting summary
does not reflect a correct result.

Why use Concurrency method?

Reasons for using Concurrency control method is DBMS:

 To apply Isolation through mutual exclusion between conflicting transactions
 To resolve read-write and write-write conflict issues
 To preserve database consistency through constantly preserving execution

obstructions
 The system needs to control the interaction among the concurrent transactions.

This control is achieved using concurrent-control schemes.
 Concurrency control helps to ensure serializability

Example

Assume that two people who go to electronic kiosks at the same time to buy a movie
ticket for the same movie and the same show time.

However, there is only one seat left in for the movie show in that particular theatre.
Without concurrency control, it is possible that both moviegoers will end up purchasing
a ticket. However, concurrency control method does not allow this to happen. Both
moviegoers can still access information written in the movie seating database. But
concurrency control only provides a ticket to the buyer who has completed the
transaction process first.

Concurrency Control Protocols

Different concurrency control protocols offer different benefits between the amount of
concurrency they allow and the amount of overhead that they impose.

 Lock-Based Protocols
 Two Phase
 Timestamp-Based Protocols
 Validation-Based Protocols

Lock-based Protocols

A lock is a data variable which is associated with a data item. This lock signifies that
operations that can be performed on the data item. Locks help synchronize access to
the database items by concurrent transactions.

All lock requests are made to the concurrency-control manager. Transactions proceed
only once the lock request is granted.

Binary Locks: A Binary lock on a data item can either locked or unlocked states.

Shared/exclusive: This type of locking mechanism separates the locks based on their
uses. If a lock is acquired on a data item to perform a write operation, it is called an
exclusive lock.

1. Shared Lock (S):

A shared lock is also called a Read-only lock. With the shared lock, the data item can
be shared between transactions. This is because you will never have permission to
update data on the data item.

For example, consider a case where two transactions are reading the account balance
of a person. The database will let them read by placing a shared lock. However, if
another transaction wants to update that account's balance, shared lock prevent it until
the reading process is over.

2. Exclusive Lock (X):

With the Exclusive Lock, a data item can be read as well as written. This is exclusive
and can't be held concurrently on the same data item. X-lock is requested using lock-x
instruction. Transactions may unlock the data item after finishing the 'write' operation.

For example, when a transaction needs to update the account balance of a person. You
can allows this transaction by placing X lock on it. Therefore, when the second
transaction wants to read or write, exclusive lock prevent this operation.

3. Simplistic Lock Protocol

This type of lock-based protocols allows transactions to obtain a lock on every object
before beginning operation. Transactions may unlock the data item after finishing the
'write' operation.

4. Pre-claiming Locking

Pre-claiming lock protocol helps to evaluate operations and create a list of required data
items which are needed to initiate an execution process. In the situation when all locks
are granted, the transaction executes. After that, all locks release when all of its
operations are over.

DATABASE RECOVERY IN DBMS AND ITS TECHNIQUES:
There can be any case in database system like any computer system when database
failure happens. So data stored in database should be available all the time whenever it
is needed. So Database recovery means recovering the data when it get deleted,
hacked or damaged accidentally. Atomicity is must whether is transaction is over or not
it should reflect in the database permanently or it should not effect the database at all.
So database recovery and database recovery techniques are must in DBMS. So
database recovery techniques in DBMS are given below.

Crash recovery:
DBMS may be an extremely complicated system with many transactions being
executed each second. The sturdiness and hardiness of software rely upon its
complicated design and its underlying hardware and system package. If it fails or
crashes amid transactions, it’s expected that the system would follow some style of rule
or techniques to recover lost knowledge.

DATABASE RECOVERY IN DBMS AND ITS TECHNIQUES

Classification of failure:
To see wherever the matter has occurred, we tend to generalize a failure into numerous
classes, as follows:

 Transaction failure
 System crash
 Disk failure

https://whatisdbms.com/what-is-a-database/
https://whatisdbms.com/what-is-database-management-system-dbms/

Types of Failure

1. Transaction failure: A transaction needs to abort once it fails to execute or once
it reaches to any further extent from wherever it can’t go to any extent further.
This is often known as transaction failure wherever solely many transactions or
processes are hurt. The reasons for transaction failure are:

 Logical errors
 System errors

1. Logical errors: Where a transaction cannot complete as a result of its code error
or an internal error condition.

2. System errors: Wherever the information system itself terminates an energetic
transaction as a result of the DBMS isn’t able to execute it, or it’s to prevent due
to some system condition. to Illustrate, just in case of situation or resource
inconvenience, the system aborts an active transaction.

3. System crash: There are issues − external to the system − that will cause the
system to prevent abruptly and cause the system to crash. For instance,
interruptions in power supply might cause the failure of underlying hardware or
software package failure. Examples might include OS errors.

4. Disk failure: In early days of technology evolution, it had been a typical
drawback wherever hard-disk drives or storage drives accustomed to failing
oftentimes. Disk failures include the formation of dangerous sectors,
unreachability to the disk, disk crash or the other failure, that destroys all or a
section of disk storage.

Storage structure:
Classification of storage structure is as explained below:

https://whatisdbms.com/wp-content/uploads/2018/06/types-of-failure.jpg

Classification Of Storaee

1. Volatile storage: As the name suggests, a memory board (volatile storage)
cannot survive system crashes. Volatile storage devices are placed terribly near
to the CPU; usually, they’re embedded on the chipset itself. For instance, main
memory and cache memory are samples of the memory board. They’re quick
however will store a solely little quantity of knowledge.

2. Non-volatile storage: These recollections are created to survive system
crashes. they’re immense in information storage capability, however slower in the
accessibility. Examples could include hard-disks, magnetic tapes, flash memory,
and non-volatile (battery backed up) RAM.

Recovery and Atomicity:
When a system crashes, it should have many transactions being executed and
numerous files opened for them to switch the information items. Transactions are a
product of numerous operations that are atomic in nature. However consistent with
ACID properties of a database, atomicity of transactions as an entire should be
maintained, that is, either all the operations are executed or none.
When a database management system recovers from a crash, it ought to maintain the
subsequent:

 It ought to check the states of all the transactions that were being executed.
 A transaction could also be within the middle of some operation; the database

management system should make sure the atomicity of the transaction during
this case.

 It ought to check whether or not the transaction is completed currently or it must
be rolled back.

 No transactions would be allowed to go away from the database management
system in an inconsistent state.

There are 2 forms of techniques, which may facilitate a database management system
in recovering as well as maintaining the atomicity of a transaction:

 Maintaining the logs of every transaction, and writing them onto some stable
storage before truly modifying the info.

 Maintaining shadow paging, wherever the changes are done on a volatile
memory, and later, and the particular info is updated.

Log-based recovery Or Manual Recovery):

https://whatisdbms.com/wp-content/uploads/2018/06/classification-of-storage.jpg

Log could be a sequence of records, which maintains the records of actions performed
by dealing. It’s necessary that the logs area unit written before the particular
modification and hold on a stable storage media, that is failsafe. Log-based recovery
works as follows:

 The log file is unbroken on a stable storage media.
 When a transaction enters the system and starts execution, it writes a log

regarding it.

	Database Transaction
	Facts about Database Transactions
	ACID Properties
	Concurrency Control
	Potential problems of Concurrency
	Why use Concurrency method?
	Example

	Concurrency Control Protocols
	Lock-based Protocols
	DATABASE RECOVERY IN DBMS AND ITS TECHNIQUES

